◀Back
Debug Native Executables with GDB
Which GDB to use?
- Please use GDB 10.2 or later. The debug info is tested via
mx debuginfotest
against 10.2. - Note that later versions might have slightly different formatting of debugger output (which, for example, may cause CI/CD gate checks to fail)
- GDB bundled in recent Linux releases works just fine for debugging sessions
Build a Native Executable with Debug Information
To build a native executable with debug information, provide the -g
command-line option for javac
when compiling the application, and then to the native-image
builder.
This enables source-level debugging, and the debugger (GDB) then correlates machine instructions with specific source lines in Java files.
Adding -g
to the native-image
arguments causes debuginfo to be generated.
Next to the native executable, there will be an <executable_name>.debug file that contains debuginfo and a sources/ directory that contains Java source files, which the debugger uses to show sources for lineinfo. For example:
hello_image
hello_image.debug
sources
GDB automatically loads the <executable_name>.debug file for a given native executable <executable_name>
. (There is a link between the native executable and its *.debug file)
For a better debugging experience, we recommend combining
-g
with-O0
. The latter option disables inlining and other optimizations of the Graal compiler, which otherwise would be observable in the debugger (for example, the debugger may jump back and forth between lines instead of allowing you to step from one line to the next one). At the same time,-O0
also enables additional metadata to be collected in the compiler, which then helps the debugger to resolve, for example, local variables.
Use GDB with New Debug Information
Build Information
The *.debug file contains additional information about the build, which can be accessed as follows:
readelf -p .debug.svm.imagebuild.classpath hello_image.debug
It gives a list of all classpath entries that were used to build the native executable:
String dump of section '.debug.svm.imagebuild.classpath':
[ 0] /home/user/.mx/cache/HAMCREST_e237ae735aac4fa5a7253ec693191f42ef7ddce384c11d29fbf605981c0be077d086757409acad53cb5b9e53d86a07cc428d459ff0f5b00d32a8cbbca390be49/hamcrest.jar
[ b0] /home/user/.mx/cache/JUNIT_5974670c3d178a12da5929ba5dd9b4f5ff461bdc1b92618c2c36d53e88650df7adbf3c1684017bb082b477cb8f40f15dcf7526f06f06183f93118ba9ebeaccce/junit.jar
[ 15a] /home/user/mx/mxbuild/jdk20/dists/jdk9/junit-tool.jar
[ 1a9] /home/user/graal/substratevm/mxbuild/jdk20/com.oracle.svm.test/bin
The following sections are available
- .debug.svm.imagebuild.classpath
- .debug.svm.imagebuild.modulepath
- .debug.svm.imagebuild.arguments
- .debug.svm.imagebuild.java.properties
Where is the main()
Method?
Use
info functions ::main
to find all methods named main
and then use b <main method name>
, for example:
(gdb) info functions ::main
All functions matching regular expression "::main":
File hello/Hello.java:
76: void hello.Hello::main(java.lang.String[]*);
File java/util/Timer.java:
534: void java.util.TimerThread::mainLoop();
(gdb) b 'hello.Hello::main'
Breakpoint 1 at 0x83c030: file hello/Hello.java, line 76.
Set a Breakpoint
First, find the type of the method you want to set a breakpoint in, for example:
(gdb) info types ArrayList
All types matching regular expression "ArrayList":
...
File java/util/ArrayList.java:
java.util.ArrayList;
java.util.ArrayList$ArrayListSpliterator;
java.util.ArrayList$Itr;
java.util.ArrayList$ListItr;
...
Now use the following GDB autocompletion:
(gdb) b 'java.util.ArrayList::
Pressing tab twice now shows all ArrayList
methods to choose from:
java.util.ArrayList::ArrayList(int) java.util.ArrayList::iterator()
java.util.ArrayList::ArrayList(java.util.Collection*) java.util.ArrayList::lastIndexOf(java.lang.Object*)
java.util.ArrayList::add(int, java.lang.Object*) java.util.ArrayList::lastIndexOfRange(java.lang.Object*, int, int)
java.util.ArrayList::add(java.lang.Object*) java.util.ArrayList::listIterator()
java.util.ArrayList::add(java.lang.Object*, java.lang.Object[]*, int) java.util.ArrayList::listIterator(int)
java.util.ArrayList::addAll(int, java.util.Collection*) java.util.ArrayList::nBits(int)
java.util.ArrayList::addAll(java.util.Collection*) java.util.ArrayList::outOfBoundsMsg(int)
...
If we complete with
(gdb) b 'java.util.ArrayList::add`
breakpoints in all variants of add
are installed.
Arrays
Arrays have a data
field that can be accessed via an index to get the individual array elements, for example:
Thread 1 "hello_image" hit Breakpoint 1, hello.Hello::main(java.lang.String[]*) (args=0x7ff33f800898) at hello/Hello.java:76
76 Greeter greeter = Greeter.greeter(args);
(gdb) p args
$1 = (java.lang.String[] *) 0x7ff33f800898
(gdb) p *args
$2 = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1e37be0
}, <No data fields>},
members of java.lang.String[]:
len = 4,
data = 0x7ff33f8008a0
}
(gdb) p args.data
$3 = 0x7ff33f8008a0
(gdb) ptype args.data
type = class _z_.java.lang.String : public java.lang.String {
} *[0]
Here args.data
can be accessed via an index.
In this case, the first of the four array elements is a pointer to a String:
(gdb) p args.data[0]
$4 = (_z_.java.lang.String *) 0x27011a
Strings
To see the actual contents of a Java String object, look at its value
field, for example:
(gdb) p args.data[0]
$4 = (_z_.java.lang.String *) 0x27011a
args.data[0]
points to a String object. Let’s deref:
(gdb) p *args.data[0]
$5 = {
<java.lang.String> = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1bb4780
}, <No data fields>},
members of java.lang.String:
value = 0x270118,
hash = 0,
coder = 0 '\000',
hashIsZero = false,
static CASE_INSENSITIVE_ORDER = 0x19d752,
...
static COMPACT_STRINGS = true
}, <No data fields>}
The value
field holds the String data.
Let’s check the type of value
:
(gdb) p args.data[0].value
$3 = (_z_.byte[] *) 0x250119
value
is of type byte[]
.
As we already learned before, the elements of an array can be accessed via its data
-field.
(gdb) p args.data[0].value.data
$10 = 0x7ff33f8008c8 "this\376\376\376\376\200G\273\001\030\001'"
GDB is smart enough to interpret the byte-pointer as a C string out of the box.
But in essence, it is an array.
The following gives us the t
from this
.
(gdb) p args.data[0].value.data[0]
$13 = 116 't'
The reason for the garbage after the last char is that Java String values are not 0-terminated (unlike C strings).
To know where the garbage starts we can inspect the len
-field.
(gdb) p args.data[0].value.len
$14 = 4
Downcasting
Suppose your source uses a variable of static type Greeter
and you want to inspect its data.
75 public static void main(String[] args) {
76 Greeter greeter = Greeter.greeter(args);
77 greeter.greet(); // Here we might have a NamedGreeter
As you can see, currently GDB only knows about the static type of greeter in line 77:
Thread 1 "hello_image" hit Breakpoint 2, hello.Hello::main(java.lang.String[]*) (args=<optimized out>) at hello/Hello.java:77
77 greeter.greet();
(gdb) p greeter
$17 = (hello.Hello$Greeter *) 0x7ff7f9101208
Also, we are not able to see fields that only exist for the NamedGreeter
subclass.
(gdb) p *greeter
$18 = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1d1cae0
}, <No data fields>}, <No data fields>}
But we do have the hub
-field, which points to the class-object of an object.
Therefore, it allows us to determine the runtime-type of the Greeter object at address 0x7ff7f9101208
:
(gdb) p greeter.hub
$19 = (_z_.java.lang.Class *) 0x1d1cae0
(gdb) p *greeter.hub
$20 = {
<java.lang.Class> = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1bec910
}, <No data fields>},
members of java.lang.Class:
typeCheckStart = 1188,
name = 0xb94a2, <<<< WE ARE INTERESTED IN THIS FIELD
superHub = 0x90202,
...
monitorOffset = 8,
optionalIdentityHashOffset = 12,
flags = 0,
instantiationFlags = 3 '\003'
}, <No data fields>}
(gdb) p greeter.hub.name
$21 = (_z_.java.lang.String *) 0xb94a2
(gdb) p greeter.hub.name.value.data
$22 = 0x7ff7f80705b8 "hello.Hello$NamedGreeter\351\001~*"
So you learned that the actual type of that object is hello.Hello$NamedGreeter
.
Now cast to that type:
(gdb) set $rt_greeter = ('hello.Hello$NamedGreeter' *) greeter
Now you can inspect the downcasted convenience variable rt_greeter
:
(gdb) p $rt_greeter
$23 = (hello.Hello$NamedGreeter *) 0x7ff7f9101208
(gdb) p *$rt_greeter
$24 = {
<hello.Hello$Greeter> = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1d1cae0
}, <No data fields>}, <No data fields>},
members of hello.Hello$NamedGreeter:
name = 0x270119
}
Now you can see the name
field that only exists in the NamedGreeter
subtype.
(gdb) p $rt_greeter.name
$25 = (_z_.java.lang.String *) 0x270119
So the name
field is of type String. You already know how to see the contents of a String:
(gdb) p $rt_greeter.name.value.data
$26 = 0x7ff7f91008c0 "FooBar\376\376\200G\273\001\027\001'"
Note: If the static type that you want to downcast from is a compressed reference then the type used in the downcast also needs to be that of a compressed reference.
For example, if you have:
(gdb) p elementData.data[0]
$38 = (_z_.java.lang.Object *) 0x290fcc
In the internal array of an ArrayList
, the first entry points to a java.lang.Object
with a _z_.
prefix, which denotes that this is a compressed ref.
To check what the runtime-type of that object is, use:
(gdb) p elementData.data[0].hub.name.value.data
$40 = 0x7ff7f8665600 "java.lang.String=\256\271`"
Now you know that the compressed ref actually points to a java.lang.String
.
Then, when you cast, do not forget to use the _z_.
prefix.
(gdb) p ('_z_.java.lang.String' *) elementData.data[0]
$41 = (_z_.java.lang.String *) 0x290fcc
(gdb) p *$41
$43 = {
<java.lang.String> = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1bb4780
}, <No data fields>},
members of java.lang.String:
value = 0x290fce,
...
To see the contents of that String, again use:
(gdb) p $41.value.data
$44 = 0x7ff7f9207e78 "#subsys_name\thierarchy\tnum_cgroups\tenabled"
Using the this
variable in instance methods
(gdb) bt
#0 hello.Hello$NamedGreeter::greet() (this=0x7ff7f9101208) at hello/Hello.java:71
#1 0x000000000083c060 in hello.Hello::main(java.lang.String[]*) (args=<optimized out>) at hello/Hello.java:77
#2 0x0000000000413355 in com.oracle.svm.core.JavaMainWrapper::runCore0() () at com/oracle/svm/core/JavaMainWrapper.java:178
#3 0x00000000004432e5 in com.oracle.svm.core.JavaMainWrapper::runCore() () at com/oracle/svm/core/JavaMainWrapper.java:136
#4 com.oracle.svm.core.JavaMainWrapper::doRun(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (argc=<optimized out>, argv=<optimized out>) at com/oracle/svm/core/JavaMainWrapper.java:233
#5 com.oracle.svm.core.JavaMainWrapper::run(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (argc=<optimized out>, argv=<optimized out>) at com/oracle/svm/core/JavaMainWrapper.java:219
#6 com.oracle.svm.core.code.IsolateEnterStub::JavaMainWrapper_run_e6899342f5939c89e6e2f78e2c71f5f4926b786d(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (__0=<optimized out>, __1=<optimized out>)
at com/oracle/svm/core/code/IsolateEnterStub.java:1
(gdb) p this
$1 = (hello.Hello$NamedGreeter *) 0x7ff7f9001218
(gdb) p *this
$2 = {
<hello.Hello$Greeter> = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1de2260
}, <No data fields>}, <No data fields>},
members of hello.Hello$NamedGreeter:
name = 0x25011b
}
(gdb) p this.name
$3 = (_z_.java.lang.String *) 0x270119
Just like in Java or C++ code, in instance-methods, prefixing with this.
is not needed.
(gdb) p name
$7 = (_z_.java.lang.String *) 0x270119
(gdb) p name.value.data
$8 = 0x7ff7f91008c0 "FooBar\376\376\200G\273\001\027\001'"
Accessing static fields
While static fields are shown whenever an instance of an object is printed, you just want to see the value of a specific static field.
(gdb) p 'java.math.BigDecimal::BIG_TEN_POWERS_TABLE'
$23 = (_z_.java.math.BigInteger[] *) 0x132b95
To get a list of all static fields, use:
(gdb) info variables ::
Inspecting .class
Objects
For every Java type in the image, there exists an easy way to access its class object (aka the hub).
(gdb) info types PrintStream
All types matching regular expression "PrintStream":
...
File java/io/PrintStream.java:
java.io.PrintStream;
java.io.PrintStream$1;
...
To access the hub of java.io.PrintStream
, you can use the .class
suffix:
(gdb) p 'java.io.PrintStream.class'
$4 = {
<java.lang.Object> = {
<_objhdr> = {
hub = 0x1bec910
}, <No data fields>},
members of java.lang.Class:
typeCheckStart = 1340,
name = 0xbab58,
superHub = 0x901ba,
...
sourceFileName = 0xbab55,
classInitializationInfo = 0x14d189,
module = 0x14cd8d,
nestHost = 0xde78d,
simpleBinaryName = 0x0,
companion = 0x149856,
signature = 0x0,
...
}
This allows you, for example, to check which module java.io.PrintStream
belongs to:
(gdb) p 'java.io.PrintStream.class'.module.name.value.data
$12 = 0x7ff7f866b000 "java.base"
Inlined methods
Setting a breakpoint in PrintStream.writeln
(gdb) b java.io.PrintStream::writeln
Breakpoint 2 at 0x4080cb: java.io.PrintStream::writeln. (35 locations)
Now you navigate to:
(gdb) bt
#0 java.io.BufferedWriter::min(int, int) (this=<optimized out>, a=8192, b=14) at java/io/BufferedWriter.java:216
#1 java.io.BufferedWriter::implWrite(java.lang.String*, int, int) (this=0x7ff7f884e828, s=0x7ff7f9101230, off=<optimized out>, len=<optimized out>) at java/io/BufferedWriter.java:329
#2 0x000000000084c50d in java.io.BufferedWriter::write(java.lang.String*, int, int) (this=<optimized out>, s=<optimized out>, off=<optimized out>, len=<optimized out>) at java/io/BufferedWriter.java:313
#3 0x0000000000901369 in java.io.Writer::write(java.lang.String*) (this=<optimized out>, str=<optimized out>) at java/io/Writer.java:278
#4 0x00000000008df465 in java.io.PrintStream::implWriteln(java.lang.String*) (this=0x7ff7f87e67b8, s=<optimized out>) at java/io/PrintStream.java:846
#5 0x00000000008e10a5 in java.io.PrintStream::writeln(java.lang.String*) (this=0x7ff7f87e67b8, s=<optimized out>) at java/io/PrintStream.java:826
#6 0x000000000083c00c in java.io.PrintStream::println(java.lang.String*) (this=<optimized out>, x=<optimized out>) at java/io/PrintStream.java:1168
#7 hello.Hello$NamedGreeter::greet() (this=<optimized out>) at hello/Hello.java:71
#8 0x000000000083c060 in hello.Hello::main(java.lang.String[]*) (args=<optimized out>) at hello/Hello.java:77
#9 0x0000000000413355 in com.oracle.svm.core.JavaMainWrapper::runCore0() () at com/oracle/svm/core/JavaMainWrapper.java:178
#10 0x00000000004432e5 in com.oracle.svm.core.JavaMainWrapper::runCore() () at com/oracle/svm/core/JavaMainWrapper.java:136
#11 com.oracle.svm.core.JavaMainWrapper::doRun(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (argc=<optimized out>, argv=<optimized out>) at com/oracle/svm/core/JavaMainWrapper.java:233
#12 com.oracle.svm.core.JavaMainWrapper::run(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (argc=<optimized out>, argv=<optimized out>) at com/oracle/svm/core/JavaMainWrapper.java:219
#13 com.oracle.svm.core.code.IsolateEnterStub::JavaMainWrapper_run_e6899342f5939c89e6e2f78e2c71f5f4926b786d(int, org.graalvm.nativeimage.c.type.CCharPointerPointer*) (__0=<optimized out>, __1=<optimized out>)
at com/oracle/svm/core/code/IsolateEnterStub.java:1
If you query extra info about the top frame, you see that min
got inlined into implWrite
:
(gdb) info frame
Stack level 0, frame at 0x7fffffffdb20:
rip = 0x84af8a in java.io.BufferedWriter::min(int, int) (java/io/BufferedWriter.java:216); saved rip = 0x84c50d
inlined into frame 1
source language unknown.
Arglist at unknown address.
Locals at unknown address, Previous frame's sp in rsp
that min
got inlined into implWrite
.
Now stepping into the use-site of min
, we see
(gdb) bt
#0 java.lang.String::getChars(int, int, char[]*, int) (this=0x7ff7f9101230, srcBegin=0, srcEnd=14, dst=0x7ff7f858ac58, dstBegin=0) at java/lang/String.java:1688
#1 java.io.BufferedWriter::implWrite(java.lang.String*, int, int) (this=0x7ff7f884e828, s=0x7ff7f9101230, off=<optimized out>, len=<optimized out>) at java/io/BufferedWriter.java:330
...
that value 14
was returned by min
(as expected).
Calling svm_dbg_
-helper functions during debugging
When the image gets built with -H:+IncludeDebugHelperMethods
, additional @CEntryPoint
-functions are defined that can be called from GDB during debugging, for example:
(gdb) p greeter
$3 = (hello.Hello$Greeter *) 0x7ffff6881900
Here again, you have a local named greeter
with the static-type hello.Hello$Greeter
.
To see its runtime-type, you can use the methods already described above.
Alternatively, you can make use of the svm_dbg_
helper functions.
For example, from within the running debug session, you can call:
void svm_dbg_print_hub(graal_isolatethread_t* thread, size_t hubPtr)
from within the running debug session. We have to pass a value for graal_isolatethread_t
and the absolute address of the hub we want to get printed.
In most situations, the value for graal_isolatethread_t
is just the value of the current IsolateThread
that can be found in a platform-specific register:
Platform | Register |
---|---|
amd64 |
$r15 |
aarch64 |
$r28 |
Finally, before we can call svm_dbg_print_hub
we also have to make sure we have the absolute address of the hub we want to print. Using
(gdb) p greeter.hub
$4 = (_z_.java.lang.Class *) 0x837820 <java.io.ObjectOutputStream::ObjectOutputStream(java.io.OutputStream*)+1120>
reveals that in the current situation, the hub
-field in greeter
holds a compressed reference to the hub (the hub-type
is prefixed with _z_.
).
Thus, we first need to get the absolute address of the hub field by using another svm_dbg_
-helper method.
(gdb) call svm_dbg_obj_uncompress($r15, greeter.hub)
$5 = 140737339160608
(gdb) p/x $5
$6 = 0x7ffff71b7820
With the help of calling svm_dbg_obj_uncompress
, you now know that the hub is located at address 0x7ffff71b7820
and you can finally call svm_dbg_print_hub
:
(gdb) call (void) svm_dbg_print_hub($r15, 0x7ffff71b7820)
hello.Hello$NamedGreeter
Both calls to svm_dbg_
helper can be combined into a single command line:
(gdb) call (void) svm_dbg_print_hub($r15, svm_dbg_obj_uncompress($r15, greeter.hub))
hello.Hello$NamedGreeter
The following svm_dbg_
helper methods are currently defined:
int svm_dbg_ptr_isInImageHeap(graal_isolatethread_t* thread, size_t ptr);
int svm_dbg_ptr_isObject(graal_isolatethread_t* thread, size_t ptr);
int svm_dbg_hub_getLayoutEncoding(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_getArrayElementSize(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_getArrayBaseOffset(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_isArray(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_isPrimitiveArray(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_isObjectArray(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_isInstance(graal_isolatethread_t* thread, size_t hubPtr);
int svm_dbg_hub_isReference(graal_isolatethread_t* thread, size_t hubPtr);
long long int svm_dbg_obj_getHub(graal_isolatethread_t* thread, size_t objPtr);
long long int svm_dbg_obj_getObjectSize(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_getArrayElementSize(graal_isolatethread_t* thread, size_t objPtr);
long long int svm_dbg_obj_getArrayBaseOffset(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_isArray(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_isPrimitiveArray(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_isObjectArray(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_isInstance(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_obj_isReference(graal_isolatethread_t* thread, size_t objPtr);
long long int svm_dbg_obj_uncompress(graal_isolatethread_t* thread, size_t compressedPtr);
long long int svm_dbg_obj_compress(graal_isolatethread_t* thread, size_t objPtr);
int svm_dbg_string_length(graal_isolatethread_t* thread, size_t strPtr);
void svm_dbg_print_hub(graal_isolatethread_t* thread, size_t hubPtr);
void svm_dbg_print_obj(graal_isolatethread_t* thread, size_t objPtr);
void svm_dbg_print_string(graal_isolatethread_t* thread, size_t strPtr);
void svm_dbg_print_fatalErrorDiagnostics(graal_isolatethread_t* thread, size_t sp, void * ip);
void svm_dbg_print_locationInfo(graal_isolatethread_t* thread, size_t mem);