
GraalVM: Language-
Level Virtualization
Universal language runtime revolutionizes the ability to
‘write once, run anywhere.’

Vol 1.0, April 2018

Oracle | GraalVM: Language-Level Virtualization 2

Computer virtualization has been a consistent trend for the

past 20 years. While “virtualization” and “virtual machines”

(VMs) mean different things in different contexts, they have

a couple of goals in common: the isolation of code from

other code running in the same machine and the ability to

“write once, run anywhere.”

To date, this virtualization vision has been incomplete.

That’s because traditional virtualization approaches don’t

address the issue of multiple programming languages.

Meanwhile, the number of programming languages in use

continues to increase, with the most popular language

(Java) garnering only about 10 percent market share. So

virtualization’s multilingual problem is growing.

Attempts to build multilingual runtimes to fill this void

have fallen short with poor performance and an inability to

support all the semantics, features, and native extensions

libraries of the new languages. But all that is changing with

GraalVM language-level virtualization.

Introduction

Current Virtualization Approaches
As mentioned, “virtualization” can mean different things,

depending on context. For example, a Java VM is very

different than a VM like VirtualBox or Xen. In the case of

the Java VM, the goal is to run your program on any kind

of processor without modification. We’ll call this processor

virtualization. In the case of a VM like VirtualBox or Xen, the

goal is to run your program on any operating system. So

we’ll call this OS virtualization. Both kinds of VMs provide

some level of isolation and safety to keep the programs

they execute from misusing the resources of the underlying

hardware in a “sandbox.” They allow multiple tenant

applications to share the hardware for efficiency reasons.

One recent trend in the world of virtualization is to move

towards lighter sandboxes for tenant applications. A major

step has been to move from VMs that provision a separate

OS per tenant to a “container” that isolates applications

but shares a single underlying OS among multiple tenants.

This allows a sandbox to be smaller, and more can fit on a

single server. A second phase towards smaller sandboxes

is called “serverless computing,” also called functions-as-

a-service, or FaaS. In serverless computing, a container is

allocated to an application only when it is being used, and

cloud customers are only billed for the time used. If usage

of an application is sporadic, serverless computing can be

even more efficient than containers, since a container is

spun up only when needed. Of course, if the time to start

up a container is high, then serverless computing is

less efficient.

As mentioned, neither OS virtualization nor processor

virtualization are a complete solution to enabling “write

once, run anywhere.” They don’t address the growing

number of programming languages in use (Figure 1).

Generally, a library is unavailable for use in an application

if it is written in a different language than the consuming

application. An exception is when the library can tolerate

high overhead per call and operations don’t mind managing

multiple language runtimes with different configuration

and resource management.1 If you write a library in Python,

for example, there will be much more overhead to call

that library from a Java application than from a

Python application.

Expense and development burdens

Developing an application in multiple languages is also

more expensive, as there is no common set of tools for

debugging and profiling multilingual applications. Even more

troublesome, any data needed by more than one language

in your application must be copied into each language

runtime and kept in sync across the various languages.

Many organizations try to enforce a standard language for

applications to reduce runtime inefficiencies and avoid the

additional costs of multilingual development. However,

this is not easy. First of all, each developer is used to

writing code in a particular language or two and feels most

productive in a particular language. Hiring programmers only

with experience in a particular language can often make it

much harder to find staff.

It’s also common in large organizations for multilingualism

to creeps in with acquired companies, which have often

made different programming language choices. Usually, it

is impossible to force all of the company’s technology onto

one language platform.

1	 As an aside, most popular languages today (Java, Python, Ruby, R, JavaScript) involve an application runtime that must be executed, and which in turn executes
the program (sometimes called “high level languages”). “Native languages” are programming languages that compile to an executable directly accessing the OS,
and don’t need a runtime, such as C, C++, Go, and FORTRAN.

Multilingual Challenges

Oracle | GraalVM: Language-Level Virtualization 3

PROGRAMMING LANGUAGE POPULARITY

(Top 20 Languages from May 2017 Tiobe Index)

Others

Java

C

C++

Python

C#

VB.NET

JavaScript

Assembly language
PHP

PeriRubyVBSwift
R

Go

Objective-C

MATLAB

Delphi/Object Pascal

PL/SQL

Scratch

Figure 1: Programming languages
continue to grow in number,
challenging virtualization’s goal to
“write once, run anywhere.”

However, every company, large and small, faces the reality

that different languages are better at different jobs, in part

because of the community and ecosystem that have grown

up around those languages. For example, Ruby is used

frequently for web front ends and fancy user interfaces,

and you are more likely to find a library to do something

like manipulate a PNG image in Ruby than in JavaScript,

Python, or other languages. Python is used frequently for

data science and machine learning, and there are more

ML libraries available in Python than in other languages.

R is popular among statisticians, and the latest statistical

techniques are most likely found in an R library.

Lack of cross-engine runtime
embeddability

Another limit is attempting to use a library in a runtime

engine like a database or a web server. Those engines

often have limits on what languages they can use to extend

or customize their functionality. Relational databases

frequently offer only a language like SQL’s procedural

extensions (e.g., Oracle’s PL/SQL or Microsoft’s Transact-

SQL). A web server like NGINX that is used for something

like a load balancer cannot run arbitrary language code to

help decide where incoming requests should be routed.

The primary issue is that language runtimes often want

to take control of managing resources like memory or

processor threads, which databases and other engines want

to control. Language runtimes are often not embeddable

into other engines, limiting “write once, run anywhere.”

Note, though, that some newer databases, especially in the

cloud, are taking the initiative to try to embed a particular

language runtime of their choice because of the need

for extensibility.

One exception to language interoperability is that most

language runtimes do provide a means to call out to native

code. They do this to provide more direct access to the

operating system and, more frequently, for efficiency, since

native code is often faster than higher-level languages. You

can write a library that is usable for many languages by

writing it in native code. One downside to doing this is that

calls between the higher-level language and native code are

usually clunky to write and involve significant performance

overhead. Each language has a native call interface (e.g.,

the Java Native Interface, or JNI) that is used to make those

cross-language calls. Making calls via native interfaces

involves memory allocation and type conversion, since the

language runtimes have their own memory management

and type system (their data must have a certain memory

layout). A second downside to writing native libraries, in

addition to lower levels of developer productivity, is that

these native call interfaces are a common source of bugs

and security vulnerabilities. The reason is that the native

code is responsible for maintaining all of the semantics of

the language runtime, such as object lifetimes.

Oracle | GraalVM: Language-Level Virtualization 4

The virtualization world is moving to lightweight containers

like Docker, allowing more isolated application instances per

server, since each container doesn’t contain the OS. So the

amount of memory needed to run the container efficiently,

called the Resident Set Size, or RSS, is much lower,

allowing more containers to fit into a server with a given

amount of physical memory. A lighter container doesn’t

make a huge difference in the number of CPU cycles

needed to run each application, given that the OS

will do the same work whether or not it is shared by

multiple containers. Still, most enterprise servers today

incur significantly more expense from provisioning DRAM

than they do from the CPUs. In addition, most general-

purpose applications2 in the data center today are limited

more by memory bandwidth than by CPU cycles. So,

memory optimization is the most important consideration

over CPU optimization, and reducing the size of containers

makes sense.

However, after removing the OS per container, there

is usually a need to run a language runtime per Docker

container, and those runtimes require a lot of memory

overhead. While a native application to print “Hello World”

needs only around 500 kB, languages like Java or JavaScript

need around 20MB in overhead for the most trivial

program. 20MB can be significantly more overhead than

the application itself needs, especially when running small

programs, or “microservices,” in the container. That means

fewer containers can fit in a server than what the application

needs, due to the language runtime overhead. Not only do

the language runtimes carry substantial memory overhead,

many of them need significant work from the CPU to

start up, which has an impact on the value of serverless

infrastructure (Figure 2).

One technique that was popular in the past for running

applications with low overhead, particularly in Java, was to

use an application server. This approach allowed multiple

Java applications to share a single Java language runtime,

which can amortize the runtime’s cost across many

applications. Unfortunately, application servers provided an

insufficient level of isolation between the various tenants;

sharing the VM in Java means sharing the same heap and

garbage collector, and that allows one memory-intensive

tenant to make the other tenants much slower. In addition,

a Java application server cannot provide good isolation

when the tenants are calling libraries in native code,

because the native code from the tenants will share the

same address space.

Overhead Per VM Sandbox Remains High

2	 By “general purpose,” I mean an application that does a variety of work such as a user interface, data manipulation, and business logic, in contrast to a
specialized application like a machine learning workload, which is very CPU-intensive.

Oracle | GraalVM: Language-Level Virtualization 5

Figure 2: Overhead to Run “Hello World” in various language runtimes

LANGUAGE VIRTUAL MACHINE INSTRUCTIONS TIME MEMORY

C helloworld 100,000 < 10 ms 450 KByte printf(“Hello World!\n”)

GNU helloworld 2.10 300,000 < 10 ms 800 KByte C with argument parsing

JavaScript V8 10,000,000 < = 10 ms 18,000 KByte version 5.6.0

JavaScript Spidermonkey 77,000,000 20 - 30 ms 10,000 KByte version C52.0a1

Java Java Hotspot VM 140,000,000 40 ms 24,000 KByte JDK 8 update 111

JavaScript GraalVM in Hotspot (JDKB) N/A 650 ms 120,000 KByte GraalVM release 0.19

Oracle Labs has been developing a third kind of technology

we call “language-level virtualization” as a part of the

GraalVM project. What GraalVM does is provide a universal

language runtime that can run any language. Whereas a

conventional language runtime is designed for a specific

language, GraalVM is an additional level of “meta” that runs

things that run languages. There have been other attempts

to build multilingual runtimes, such as the Microsoft

Common Language Runtime (CLR) and attempts to host

other languages on the Java VM. However, those efforts

have suffered from three issues in running languages they

weren’t designed for:

• An inability to support all of the semantics and features

of the new languages

• An inability to support all of the native extensions

libraries of the new language ecosystem

• Poor performance on the languages that the runtime

wasn’t designed for ahead of time

GraalVM doesn’t suffer from any of these issues, because it

starts with language fundamentals.

100 times faster

The most basic way to develop a program language runtime

is to build an interpreter—a program that takes each line of

the application code, parses it, and branches it to a specific

subroutine for each kind of operator or expression in that

language. An interpreter is easy to build, but quite slow,

since it is generally more work to parse the application code

to figure out what to do, than it is to just do the work. For

example, an interpreter for a + b must first separate out

the variables a and b from the “plus” operator, figure out if

a and b are strings or numbers, and then call the specific

function for that kind of “plus” operator. What GraalVM

does is to take an interpreter, written to a specific Java API

called “Truffle,” and automatically convert it to a compiler.

This technique makes interpreters ~100 times faster by

automatically deriving high-performance machine code and

removing any interpretation overhead.

The idea of automatically converting language interpreters

into compilers has been around since the 1970s, when

it was first published by Yoshihiko Futamura as the

“Futamura projection.” However, the Futamura projection

was impractical because it didn’t generate a compiler

that was as good as one that was built by hand for the

particular language. What Oracle Labs has finally shown

is how to make a technique for the Futamura projection

practical – even when dealing with dynamic languages

with complex semantics. The theory behind how GraalVM

creates high-quality compilers using “partial evaluation”

was published in 2017 at the preeminent Programming

Language Design & Implementation (PLDI) academic

conference on programming languages in a paper entitled

“Practical Partial Evaluation for High Performance Dynamic

Runtimes.” GraalVM watches the behavior of each

interpreter to “learn” the semantics of its language and then

incrementally compiles the parts of the application code

that are frequently used (or “hot”).

Cross-language calls with zero
overhead

You can use as many interpreters for as many languages

as you want in a GraalVM runtime, writing them all to

the Truffle API. Because there is not much difference to

GraalVM between two Truffle languages, GraalVM can call

across language boundaries with zero overhead. GraalVM

can even do a compiler optimization called “inlining” across

languages, treating function calls as if they were part of

the code calling the function to eliminate overhead. An

important Truffle feature is to provide “logical / physical

data layout independence,” which means that any memory

layout can be used for objects in each language interpreter.

In fact, a single language may have multiple different

ways to lay out an object in memory. This is an important

performance optimization; for example, data from the

network doesn’t have to be copied out of network buffers

into a language object.

Language-Level Virtualization with GraalVM

Oracle | GraalVM: Language-Level Virtualization 6

https://en.wikipedia.org/wiki/Yoshihiko_Futamura
https://pldi17.sigplan.org/event/pldi-2017-papers-practical-partial-evaluation-for-high-performance-dynamic-language-runtimes
https://pldi17.sigplan.org/event/pldi-2017-papers-practical-partial-evaluation-for-high-performance-dynamic-language-runtimes

An even more interesting effect is that objects from foreign

programming languages can be used by other GraalVM

languages and treated like objects in the current language.

This allows intermixing languages together at a very fine-

grained level without copying data.

Language interpreter for native code

The other key technology in GraalVM is a special language

interpreter that handles native code. Most native languages

(C, C++, FORTRAN, Rust, COBOL, and Go) are supported

by an open-source compiler called a Low-Level Virtual

Machine (LLVM). LLVM has a very useful feature for

GraalVM, which is that the LLVM compiler can generate

an intermediate language called “bitcode” from all of its

supported languages. Bitcode is fairly low-level and is

best understood as a kind of portable Assembly language.

GraalVM has an interpreter for that bitcode, and GraalVM

can then compile that bitcode into machine code like a

conventional compiler. The GraalVM interpreter for LLVM

bitcode allows the native extensions for other language

interpreters to run in the same GraalVM tenant, keeping the

native code isolated from other tenants’ data (Figure 3).

JavaScript
Application

Ruby
Application

• • •

R Native
Libraries

JavaScript
Libraries

Ruby Gems
& Libraries

Node.js
Native Libs

Node.js Rails Ruby/Rails
Native Libs

Compiled Code
Snippet

Java Script
Interpreter

JRuby
Interpreter R Interpreter Python

Interpreter
LLVM .bc

Interpreter

Graal
Compiler

Java Runtime

Truf�e API

Figure 3: The GraalVM
interpreter allows native
extensions for other language
interpreters to run in the same
GraalVM tenant, but keeps native
code isolated among tenants.

Oracle | GraalVM: Language-Level Virtualization 7

Most new code today is being written in a dynamic

language (e.g., Java, JavaScript, R, Ruby, or Python),

where the program is compiled at runtime using a

“just-in-time” (JIT) compiler.3 The JIT compiler watches

what the program is doing for a while, records the activity

in a “profile,” and then optimizes its compilation for that

profile. Dynamic languages need a runtime to do the

profiling and the JIT compiling and to handle tasks such as

memory management.

Code that is performance-critical is often written in static

languages, such as C/C++, FORTRAN, Go, and Rust,

where the program is usually compiled ahead-of-time (AOT)

by a compiler that is separate from the runtime system.

The compiler creates a native binary program that can be

directly executed by the computer. Static language binaries

generally have faster startup time, since they don’t have

to compile anything when they run. They also have lower

overhead (as you can see in the HelloWorld chart in Figure

2). AOT-compiled code is easier to work with for somebody

optimizing code manually, as the compiler won’t change

your code while the program is running. A disadvantage

compared to managed languages is that an additional class

of security bugs like buffer overflows are relevant for static

AOT-compiled languages.

GraalVM gives developers more choices on what code

to compile AOT: Java code as well as native code can be

compiled AOT, and the static language (native language)

code can be compiled dynamically via the LLVM bitcode

interpreter. Java code compiled AOT with GraalVM still

uses garbage-collected memory with bounds-checks on

memory accesses to guarantee memory safety. GraalVM

provides a runtime library and a set of tools for building

Java AOT called SubstrateVM. Any GraalVM AOT code

can be debugged with native tools and can directly call

into other native libraries not compiled by GraalVM. Using

SubstrateVM allows GraalVM to be embedded in other

native runtimes, such as a database. It also provides

ways to restrict the portions of the AOT-compiled code

that are available to the dynamic language code, using a

whitelist, for security reasons. GraalVM was designed to

be embeddable and use the underlying system (e.g., the

database) tools for security, resource management, and

work scheduling.

Using SubstrateVM, we can see substantial benefits on

memory overhead and startup time, as shown in the

expanded table in Figure 4.

3	 For simplicity, any place we discuss the “Java language” can be read as “any language designed to work on the JavaVM”, including Java, Scala & Kotlin.

Oracle | GraalVM: Language-Level Virtualization 8

Figure 4: SubstrateVM delivers overhead and startup time benefits

LANGUAGE VIRTUAL MACHINE INSTRUCTIONS TIME MEMORY

C helloworld 100,000 < 10 ms 450 KByte printf(“Hello World!\n”)

JavaScript Standalone GraalVM 220,000 < 10 ms 850 KByte GraalVM release 0.19

GNU helloworld 2.10 300,000 < 10 ms 800 KByte C with argument parsing

JavaScript V8 10,000,000 < = 10 ms 18,000 KByte version 5.6.0

JavaScript Spidermonkey 77,000,000 20 - 30 ms 10,000 KByte version C52.0a1

Java Java Hotspot VM 140,000,000 40 ms 24,000 KByte JDK 8 update 111

What Code Should I Trust?

The interesting aspect about running GraalVM either in

Java Hotspot or SubstrateVM is that only the precompiled

code has access to all of the data in the VM. Therefore

the precompiled code must be “trusted” (where the code

operates with no security restrictions other than those

from the OS). In particular, the language implementations

in GraalVM are not trusted code, and only the JIT compiler

and the SubstrateVM libraries have to be trusted. This is

in contrast to most other VMs, where the entire language

application has access to all of the process memory.

Limiting the trusted code base limits the code that must be

manually analyzed for security vulnerabilities.

The relationships between AOT-code and dynamic code in

GraalVM are illustrated in Figure 5.

Dynamically
executed

Java
Native

precompiled

Java

HotSpot
SubstrateVM

Java or node.js or R or
Ruby or Python or

C/C++ User Function

Java or node.js or R or
Ruby or Python or

C/C++ User Function

GraalVM
on HotSpot

GraalVM on
SubstrateVM

Dynamically
executed

Native
precompiled

Figure 5: Limiting the trusted code
base limits the code that must
be manually analyzed for security
vulnerabilities.

Oracle | GraalVM: Language-Level Virtualization 9

In the past, experts believed that a language VM had to

be designed and optimized for a single language in order

to achieve the best performance. GraalVM demonstrates

comparable or better performance across all supported

languages as any other implementation. The most notable

example demonstrating this is at Twitter, which has

published performance results 23% faster using GraalVM.

Twitter is confident enough in GraalVM performance that it

is using GraalVM in production for their main tweet service

to save costs. For languages without industrial investment

such as Ruby, R and Python, GraalVM can run code up to

10 times faster.

GraalVM has also demonstrated superior performance

inside databases like the Oracle RDBMS. Stored

procedures and user-defined functions (UDFs) written

in GraalVM and operating on SQL datatypes generally

outperform those written in PL/SQL, which was designed

explicitly to work with SQL data. In fact, compilation with

GraalVM can often outperform built-in SQL functions in

particular in cases when arithmetic expressions or other

compute-intensive work is in the query.

What about Performance?

Language-level virtualization increases developer

productivity by allowing developers to use the best

language for each task. Libraries of different languages can

be used together and there is no need for any overhead

when combining programs of different languages. With

GraalVM, we demonstrate that one virtual machine can

support a large set of diverse programming languages

with high performance for each individual language. It can

be embedded in data stores and provides lower overhead

options for running code in containers, allowing more to fit

in a server, and reducing operational costs.

While GraalVM is still a new technology, it is now proven in

enough scenarios to be viable for real applications. GraalVM

is now delivering the next logical step in virtualization:

write once in any language, run it anywhere in

any engine.

Find out more at http://www.graalvm.org or on Twitter

at #graalvm.

Conclusion

Oracle | GraalVM: Language-Level Virtualization

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are
subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally
or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with
respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Visit developer.oracle.comGet Oracle Cloud now

Try Oracle Cloud for Free

https://github.com/oracle/graal
https://developer.oracle.com/
https://shop.oracle.com/apex/f?p=CLOUD:FREE&intcmp=techpaper-microserv

